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Abstract
As predictive models seep into several real-world
applications, it has become critical to ensure that
individuals who are negatively impacted by the
outcomes of these models are provided with a
means for recourse. To this end, there has been
a growing body of research on algorithmic re-
course in recent years. While recourses can be
extremely beneficial to affected individuals, their
implementation at a large scale can lead to poten-
tial data distribution shifts and other unintended
consequences. However, there is little to no re-
search on understanding the impact of algorithmic
recourse after implementation. In this work, we
address the aforementioned gaps by making one
of the first attempts at analyzing the delayed soci-
etal impact of algorithmic recourse. To this end,
we theoretically and empirically analyze the re-
courses output by state-of-the-art algorithms. Our
analysis demonstrates that large-scale implemen-
tation of recourses by end users may exacerbate
social segregation. To address this problem, we
propose novel algorithms which leverage implicit
and explicit conditional generative models to not
only minimize the chance of segregation but also
provide realistic recourses. Extensive experimen-
tation with real-world datasets demonstrates the
efficacy of the proposed approaches.

1. Introduction
Machine learning (ML) models are increasingly being de-
ployed in domains such as finance, healthcare, and public
policy to make a variety of consequential decisions. As a
result, there is a growing emphasis on providing recourse
to individuals who have been adversely impacted by the
predictions of these models (Voigt & Von dem Bussche,
2017). For example, an individual who was denied a loan by
a predictive model employed by a bank should be informed
about the reasons for this decision, and what can be done to
reverse it. Several approaches in the recent literature tackled
the problem of providing recourse by generating counterfac-
tual explanations (Wachter et al., 2017; Ustun et al., 2019;
Karimi et al., 2020a; Poyiadzi et al., 2020; Van Looveren

& Klaise, 2019) which highlight what features need to be
changed and by how much to flip a model’s prediction.

Existing recourse algorithms account for various considera-
tions when generating recourses. For instance, algorithms
such as Wachter et al. (2017) aim to generate recourses that
are low cost i.e., the distance between the counterfactual and
the original instance is as small as possible. However, in
an attempt to generate low-cost recourses, such algorithms
end up outputting counterfactual explanations which may
not be realistic and may not follow the true distribution of
individuals who receive the desired outcome. To address
this shortcoming, recent works attempted to find recourses
that adhere to the underlying data distribution by either
leveraging generative models (Pawelczyk et al., 2020), e.g.,
variational autoencoders (VAE) (Kingma & Welling, 2013)
or causal graphs (Karimi et al., 2020b).

Recent research also highlighted and addressed various chal-
lenges pertaining to the robustness (Dominguez-Olmedo
et al., 2021; Slack et al., 2021; Pawelczyk et al., 2022; Rawal
et al., 2021) and fairness (Gupta et al., 2019; von Kügelgen
et al., 2022) of algorithmic recourse. While Upadhyay et al.
(2021) constructed recourses that are robust to small shifts
in the underlying model, Dominguez-Olmedo et al. (2021)
constructed recourses that are robust to small input pertur-
bations. On the other hand, (Gupta et al., 2019) developed
an algorithm which ensures that the average recourse cost
(distance between the original instance and its counterfac-
tual) corresponding to the minority group is not significantly
worse than that of the majority group. While prior research
on algorithmic recourse has clearly accounted for various
considerations including low costs, realistic recourses, fair-
ness and robustness of recourses, little attention has been
paid to analyzing and understanding the delayed impacts
of algorithmic recourse. While recourses can be extremely
beneficial to affected individuals, their implementation at a
large scale can lead to potential data distribution shifts and
other unintended side effects such as social segregation.

In this work, we address the aforementioned gaps and make
one of the first attempts at investigating the societal impacts
of algorithmic recourse. More specifically, we analyze the
recourse outputs by state-of-the-art algorithms empirically
and theoretically in a synthetic loan lending example. Our
analysis reveals that these algorithms may increase social
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segregation under some data distributions. Studying the
effect of social segregation is motivated by the observation
that unfairness concerns often arise when different segments
of the population have clearly separated feature (qualifica-
tion) distributions. For instance, over-qualified workers may
have lower job satisfaction and loss of motivation; under-
skilled workers, on the other hand, may face a higher risk of
unemployment (Stoevska, 2018). As pointed out in Heidari
et al. (2019), segregation does not always imply the unfair-
ness, since it can also be a result of specialization where
different subpopulation intentionally invest in different qual-
ifications while unfairness usually comes with some degree
of segregation, thus it can be used as an effective means to
measure potential unfairness.

To mitigate this, we propose novel recourse algorithms
which ensure that implementing the prescribed recourses
will result in individuals with similar feature distributions of
counterfactuals across majority and minority groups. To this
end, we sample counterfactuals from high density regions
of feature distributions for both subgroups such that the
resulting counterfactuals not only lie on the data manifold
but also induce similar feature distributions for different
subgroups in the long term, thereby minimizing social seg-
regation. Since we aim to generate counterfactuals with sim-
ilar feature distributions for majority and minority groups,
i.e., “balanced” counterfactuals, we refer to these meth-
ods as balanced recourse algorithms. We also build two
variants of balanced recourse algorithms with implicit and
explicit density models for flexibility. The information of
the sensitive attribute is removed from counterfactuals in
implicit models using adversarial representation learning
when using implicit density models such as VAE. We also
conduct extensive experimentation on both synthetic and
real-world datasets in credit lending, school admission and
law enforcement to validate our proposed approaches. We
find that existing recourse algorithms often increase social
segregation and balanced recourses can reduce segregation
effectively with no significant increase in recourse cost and
cost disparity while remaining realistic. To the best of our
knowledge, our work is the first to study the delayed societal
impact of algorithmic recourse.

2. Related Work
Several approaches have been proposed in the recent litera-
ture to provide recourses to individuals who receive nega-
tive decisions from algorithms (Dhurandhar et al., 2018;
Wachter et al., 2017; Ustun et al., 2019; Van Looveren
& Klaise, 2019; Pawelczyk et al., 2020; Mahajan et al.,
2019; Karimi et al., 2020a;b; Dandl et al., 2020). These
approaches can be broadly categorized into different di-
mensions (Verma et al., 2020): type of the underlying pre-
dictive model (e.g., tree vs. differentiable classifier), type

of access they require to the underlying predictive model
(e.g., black box vs. gradient access), whether they encour-
age sparsity in counterfactuals (i.e., only a small number
of features should be changed), whether counterfactuals
should lie on the data manifold, whether the underlying
causal relationships should be accounted for when gener-
ating counterfactuals, and whether the output produced by
the method should be multiple diverse counterfactuals or
a single counterfactual. In addition, Rawal & Lakkaraju
(2020) considers how to generate global, interpretable sum-
maries of counterfactual explanations. Some recent works
also demonstrated that the recourse output by state-of-the-
art techniques might not be robust, i.e., small perturbations
to the original instance (Dominguez-Olmedo et al., 2021;
Slack et al., 2021), the underlying model (Upadhyay et al.,
2021; Rawal et al., 2021), or the recourse (Pawelczyk et al.,
2022) itself may render the previously prescribed recourses
invalid. These works also formulate and solve minimax
optimization problems to find robust recourses to address
the aforementioned challenges. Some research also consider
fair recourse which equalizes the recourse cost required for
different sensitive groups (Gupta et al., 2019; von Kügelgen
et al., 2022), which is different from our setup which con-
siders the potential segregation impact in the population.

Some recent papers have studied the long-term impact of
machine learning algorithms and fair interventions on the
decision subjects (Liu et al., 2018; D’Amour et al., 2020;
Kannan et al., 2019) where they show fair interventions
may lead to undesired outcomes while our paper consid-
ers how decision subjects will be affected by algorithmic
recourse methods through updating their mutable qualifi-
cations. More recently, Heidari et al. (2019) studied how
decision subjects will change their qualifications through
social learning (Bandura, 1962; 1978). However, their work
does not consider recourse.

3. Preliminaries
Let h : X → Y denote a predictive model and Y = {0, 1}
represents the desirable and undesirable outcome (e.g., loan
approval). For an instance x ∈ X , which has received an
unfavorable outcome, as determined by h(x) = 0, the goal
is to identify a set of changes that can be made to x in order
to change the outcome from negative to positive. The task
of modifying x requires to find a counterfactual x′ which
the predictive model outputs a positive label.

Recourse algorithms aim to provide the counterfactual x′

such that the cost required to change x to x′ is minimal
and x′ also flips the model prediction i.e., h(x′) = 1. The
cost can be defined as a distance metric such as lp norm or
learned from user preferences (Rawal & Lakkaraju, 2020).
Some work also constrains the feature changes to conform
to the underlying causal relationships (Karimi et al., 2020b)
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or the data manifold (Pawelczyk et al., 2020; Poyiadzi et al.,
2020). We broadly categorize these algorithms as distance-
based and realistic recourse algorithms.

Distance-based recourse methods: For a given distance
function d : X × X → R+, these methods try to minimize
the distance between the original instance and the generated
counterfactuals. The counterfactuals produced by these
methods are typically close to the decision boundary of the
classifier h. The objective employed by these methods can
be written as follows(Laugel et al., 2017; Wachter et al.,
2017): argminx′ d(x, x′) s.t. h(x′) ≥ s,

where s is the target score for x′, such as 0.5.

Realistic recourse methods: Beyond the desideratum that
the recourses should have low costs, several works have
argued the need for recourse algorithms to generate coun-
terfactuals that are realistic and avoid generating out-of-
distribution examples. Such constraints can be framed as:
argminx′ d(x, x′) s.t. f(x′, x) > c, h(x′) ≥ s,

where c is the constraint on the density of the generated
counterfactual examples and f can be viewed as a realistic-
ity constraint (e.g., density, or causal relationship). Such
constraint can be realized by generating counterfactual ex-
amples by perturbing the latent dimension of a trained gen-
erative model (Pawelczyk et al., 2020).

4. Impact of Recourse on Social Segregation
To model the impact of algorithmic recourse on the underly-
ing data distribution, we assume 1) the assumptions of each
algorithmic recourse method are met and all counterfactual
explanations are implementable; and 2) decision subjects
will always implement the algorithmic recourse recommen-
dations. The first assumption is used to reconcile many
different assumptions made in different recourse algorithms
and to show the segregation change under the optimal condi-
tions of these methods. The second assumption corresponds
to a case where human behaviors are subject to a micro-
utility model with an infinite reward, it also corresponds
to the worst-case segregation for each algorithm. We also
assume there is a binary sensitive group. We emphasize that
our behavior assumptions may not capture the real-world
change perfectly, and we try to highlight a potential dynamic
behavior change caused by recourse recommendations and
its prospective harm in social segregation, even in such
simplistic setting.

Having defined the user behavior model, we are able to
investigate the societal change in terms of social segregation,
a model-agnostic measure to see the change in decision
subjects’ qualifications. First, we use a toy example to
illustrate the potential risk of existing recourse methods.

The underlying data distribution for a loan application

population with two sensitive groups M and F is shown
in Figure 1a. For each sensitive group, the distribution
for repaying loans or default follows a uniform distri-
bution in a two-dimensional feature space. Assume we
have access to a perfect classifier h(x) denoted by the
blue line and aims to provide recourses to customers who
will default to improve them in the future. For ease of
our analysis, here we use a segregation measure defined
as the cross-group distance minus the within-group dis-
tance. Formally, it is defined as Ex1∼X1,x2∼X2

d(x1, x2) +
Ex1∼X1,x2∼X4

d(x1, x2) − Ex1∼X1,x2∼X3
d(x1, x2), where

X1,X2,X3,X4 represent M-repay, F-repay, M-default and
F-default respectively. We denote this measure as Segrega-
tion Index (SI). Intuitively, this is a clustering-like metric
that measures the segregation between each neighborhood
stratified by sensitive group and loan status. The adoption
of SI here is for our theoretical analysis only, as we shall
see later in Section 6, our conclusions also hold for more
complex empirical segregation measures.

The optimal counterfactuals of distance-based and realistic
methods are shown in Figure 1b and Figure 1c respectively.
For distance-based recourse algorithm like Wachter et al.
(2017), the optimal resulted distribution is around the de-
cision boundary and the optimal realistic counterfactuals
like Pawelczyk et al. (2020) will be in the region with pos-
itive density and the shortest distance to the original data
point. A numerical calculation estimates that the original SI
is 2.90. For distance-based methods, SI increases to 3.23
and counterfactuals from realistic methods lead to SI of
3.42. Both types of algorithms lead to a large increase in SI,
which indicates members in the same sensitive group may
be closer in the feature space while members in different
groups are relatively farther after all recourse recommenda-
tions are implemented. Formally, we show in Theorem 4.1,
for such parallel rectangular-shaped uniform distributions,
both types of recourse algorithms will always increase SI.

Theorem 4.1. Assume repaying male X1 with feature (x, y)
follows a uniform distribution x ∼ U [l, l+ b], y ∼ U [u, u+
a]; repaying female X2 follows x ∼ U [l + b− c, l + 2b−
c], y ∼ U [u, u + a]; default male X3 follows x ∼ U [l, l +
b], y ∼ U [−u − a,−u]; default female X4 follows x ∼
U [l+b−c, l+2b−c], y ∼ U [−u−a, u]; c < b;a, b, u, c > 0.
With perfect linear classifier y = 0 and segregation met-
ric d(X1,X2)+ d(X1,X4)− d(X1,X1)− d(X1,X3) where
d(·, ·) is the hausdorff distance with euclidean distance, the
distance-based and realistic recourse algorithms will al-
ways increase segregation for any l, u, a, b, c.

Remark 4.2 (Relation to Fairness Metrics). Heidari et al.
(2019) shows enforcing traditional group-wise effort-based
fairness constraint does not imply decreasing social seg-
regation, which calls for methods specifically designed to
reduce segregation (Figure 1b and Figure 1c are also ex-
amples where equal effort across groups may also increase



On the Impact of Algorithmic Recourse on Social Segregation

0 1 2 3 4 5

3

2

1

0

1

2

3

h(x)

M repay F repay M default F default

(a) Synthetic Data
0 1 2 3 4 5

3

2

1

0

1

2

3

h(x)

M repay
F repay

M default
F default

M recourse F recourse

(b) Distance-based
0 1 2 3 4 5

3

2

1

0

1

2

3

h(x)

M repay
F repay

M default
F default

M recourse F recourse

(c) Realistic
0 1 2 3 4 5

3

2

1

0

1

2

3

h(x)

M repay
F repay

M default
F default

M recourse F recourse

(d) Balanced

Figure 1. Toy data with different recourse methods

segregation). As we shall see later, reducing segregation also
does not imply an increase of the unfairness metric. More-
over, segregation concerns qualification mismatch between
groups, reducing segregation may hurt individual fairness
since group fairness and individual fairness are known to
conflict with each other (Binns, 2020).

5. Our Framework: Balanced Recourse
To avoid the aforementioned issue, we propose two new
recourse algorithms based on implicit and explicit density
models by offering counterfactual explanations in the high-
density regions of feature distributions of both sensitive
groups with positive outcomes.

To see the benefit of balanced recourse, in the above exam-
ple, balanced recourse offers counterfactual explanations to
regions with positive densities for both male and female as
shown in Figure 1d. On a high level, offering recourses that
are realistic for either groups can move qualifications of dif-
ferent groups closer, therefore reducing social segregation.
Empirically, SI reduces to 2.35 and theoretically, we show
that SI will always decrease in this case.

Theorem 5.1. Assume repaying male X1 with feature (x, y)
follows a uniform distribution x ∼ U [l, l+ b], y ∼ U [u, u+
a]; repaying female X2 follows x ∼ U [l + b− c, l + 2b−
c], y ∼ U [u, u+ a]; default male X3 follows a uniform dis-
tribution x ∼ U [l, l+b], y ∼ U [−u−a,−u]; default female
X4 follows x ∼ U [l+ b− c, l+2b− c], y ∼ U [−u− a, u];
c < b; a, b, u, c > 0. With perfect linear classifier
y = 0 and segregation metric d(X1,X2) + d(X1,X4) −
d(X1,X1) − d(X1,X3) where d(·, ·) is the hausdorff dis-
tance with euclidean distance, the balanced recourse algo-
rithm will always decrease segregation for any l, u, a, b, c.

5.1. Explicit Balanced Recourse (EBR)

Denote the sensitive group as m ∈ {0, 1} and predictions
as ŷ, we propose to output counterfactuals by sampling data
points ∝ P (x|m = 1, ŷ = 1)P (x|m = 0, ŷ = 1).

To sample from the joint high-density region, we rely on a
conditional density estimator such as nonparametric meth-
ods like kernel density estimation (KDE) (Ambrogioni et al.,
2017; Sugiyama et al., 2010), normalizing flows (Liu et al.,

Algorithm 1 Explicit Balanced Recourse

1: Fit Conditional Density Model Pθ(xf |x′
I ,m, ŷ = 1).

2: For x = (xf , x
′
I ,m), sample xi

f from the distribution
∝ Pθ(xf |x′

I ,m = 1, ŷ = 1)Pθ(xf |x′
I ,m = 0, ŷ = 1)

by rejection sampling.
3: Accept samples with

Pθ(x
i
f |x′

I ,m = 1, ŷ = 1)Pθ(x
i
f |x′

I ,m = 0, ŷ = 1) >

β and f((xi
f , x

′
I ,m)) = 1.

4: x
′

f = argminxi
f
d(x, (xi

f , x
′
I ,m))

5: Return x′ = {x′

f , x
′
I ,m}

2021; Trippe & Turner, 2018) or mixture density networks
(MixD) (Bishop, 1994). We denote the immutable fea-
tures of the instance such as age, sex, race as xI , mutable
features such as salary as xf . At a high level, for each
instance x = (xf , xI), we estimate the conditional den-
sity of Pθ(xf |x′

I ,m, ŷ = 1), then sample new instances
from high-density regions from Pθ(x

i
f |x′

I ,m = 1, ŷ =

1)Pθ(x
i
f |x′

I ,m = 0, ŷ = 1) by rejection sampling. This
would allow us to generate counterfactuals that have similar
qualifications in both sensitive groups. After these samples
are generated, we pick the one with the lowest recourse
cost to the original instance x. We can also make the coun-
terfactual examples to have a high density by constraining
the density of x′ to be greater than β. As we shall see in
Section 6.4, the hyperparameter β can trade off recourse
cost and social segregation. Intuitively, with the counter-
factual explanations falling in higher density regions of the
balanced area, the recourse cost should be higher with a
better social segregation outcome. Practitioners can select β
with respect to their practical need. The complete algorithm
of Explicit Balanced Recourse is shown in Algorithm 1.

5.2. Implicit Balanced Recourse (IBR)

Many conditional generative models based on GAN (Good-
fellow et al., 2014) and VAE (Tomczak & Welling, 2018)
do not offer explicit density estimations, which cannot be
used in EBR. However, we may still want to utilize these
models for their high generation quality to generate realistic
counterfactuals. First, we briefly introduce a VAE-based
recourse algorithm CCHVAE (Pawelczyk et al., 2020).
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CCHVAE: Similar to VAE, CCHVAE uses an encoder
to map the mutable features xf to a latent space z,
to maximize the likelihood of mutable features given
the immutables xI , CCHVAE proposes to concatenate
z with xI to reconstruct xf . The evidence lower
bound (ELBO) can be written as LCV = Eqϕ(z|xf ,xI)

log pθ(xf |z, xI)−KL(qϕ(z|xf , xI)||p(z|xI)), then coun-
terfactual explanations are generated by searching for the
closet latent z′ on a neighborhood of the encoded z from
xf , then decode x′

f from z′ until a new counterfactual ex-
planation with desired outcome is found.

To generate balanced recourses, we propose an additional
regularization term inspired from adversarial representation
learning (Xie et al., 2017; Roy & Boddeti, 2019) using an
additional discriminator on z predicting m trained adversar-
ially to remove the effect of the sensitive attribute on the
generated samples, therefore the latent z does not contain
any information about the sensitive attribute m.

The balanced CCHVAE objective can be written as

min
η

max
θ,ϕ

Eqϕ(z|xf ) log pθ(xf |z, x′
I)−

KL(qϕ(z|xf )||p(z|x′
I))− β log(Pη(m|z)).

The counterfactual generation algorithm is the same as CCH-
VAE’s, we refer to it as Implicit Balanced Recourse (IBR).
To see the effect and the equilibrium of the adversarial train-
ing, theoretically it can be shown that for an auto-encoder,
the optimal discriminator and decoder can be achieved given
a fixed encoder. Without loss of generality, we assume
x′
I = ∅ and write x = xf .

Theorem 5.2. Given a fixed deterministic en-
coder z = f(x), the features are sampled from
decoder x′ = gϕ(x

′|z). Training with objec-
tive minη maxθ,ϕ Ex∼P (x),z∼Pθ(z|x) logPϕ(x|z) −
β log(Pη(m|z)) with sensitive attribute m, the optimal
discriminator is Pη(m|f(x)) = p(m|f(x)) and the optimal
decoder is gϕ(x|z) = p(x|z).

Then the optimization problem reduces to minθ Ex −
logP (x|z) + β logP (m|z), then the optimal encoder in-
duces uniform distribution p(m|z) when x ⊥⊥ m.

Corollary 5.3. When x ⊥⊥ m, if the optimal discrimina-
tor and decoder as p(m|z) and p(x|z), then the optimal
encoder induces uniform distribution p(m|z).

When the discriminator and latent code is a one-to-one map-
ping, Corollary 5.3 indicates the adversarial training can
ensure that generated features induce a uniform distribution
over sensitive classes. P (x|m = 0)P (x|m = 1) ∝ P (m =
1|x)P (m = 0|x)P (x)2 is also maximized when p(m|z) is
uniform, thus the implicit balanced recourse also allows
us to sample from high-density regions of the unnormal-
ized distribution P (x|m = 0)P (x|m = 1). When x ⊥̸⊥ m,

which means the mutable features are related to the sensitive
attribute, then the optimization in encoder optimization can-
not reach optimum at the same time, the relative optimality
will depend on the underlying data distribution and β.

5.3. Recourse Cost

Ideally, we want the counterfactuals to have low cost so
that the decision subjects can improve qualifications with
minimum effort. By constraining that decision subjects with
similar qualifications of different sensitive groups should
have similar counterfactuals, the recourse costs are expected
to be higher. However, as shown in Theorem 5.4, when the
accepted distribution is already balanced, meaning all indi-
viduals from different sensitive groups have similar feature
distributions, then the recourse cost of balanced recourse
algorithms attains the same upper bound as realistic algo-
rithms’. As we shall see in the experiments, balanced coun-
terfactuals may even have lower recourse costs compared to
realistic algorithms.

Theorem 5.4. Assume male and female who repay are from
a compact subspace X1,X2 and male and female who will
default are from a compact subspace X3,X4 and the high-
density region X ′ = {x : P (x|m)P (x|1 −m) > β}. As-
sume the recourse cost d(·, ·) is measured by lp distance.
The recourse cost of the balanced recourse cost is bounded
by dH(X3,X ′)+dH(X4,X ′). The recourse cost of the real-
istic recourse cost is bounded by dH(X3,X1)+dH(X4,X2).

6. Experimental Evaluation
Baselines and Methods We compare the following re-
course algorithms: Watcher (Wachter et al., 2017), Growing
Spheres (GS) (Laugel et al., 2017), CCHVAE (Pawelczyk
et al., 2020), CRUDS (Downs et al., 2020) and Causal re-
course (Karimi et al., 2020b). Watcher and GS try to find the
minimum-distance counterfactuals across decision bound-
aries, which can be viewed as distance-based recourse algo-
rithms, while CCHVAE and CRUDS restrict the generated
counterfactuals to the data manifold, which are examples
of realistic recourse algorithms. Causal recourse assumes
an underlying causal relationship between features. We use
the default implementations of baselines in Pawelczyk et al.
(2021) and use MLP as encoder and decoder architectures
for VAE in CCHVAE, CRUDS and IBR. We use the Gaus-
sian Mixture Network (Bishop, 1994) as our density model
in EBR. For more details, see Appendix B.

Datasets First, we build a synthetic dataset to examine and
visualize the social segregation effect of recourse algorithms
by constructing a slightly more complex toy data than the toy
example discussed in Section 4 by generating the features
from a two-dimensional gaussian distribution with the same
four groups stratified by the sensitive attribute and default
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Table 1. Quantitative evaluation of counterfactual explanations generated by different recourse algorithms on synthetic datasets. Results
are averaged over 5 runs. Balanced recourse algorithms can effectively reduce social segregation while all other recourse methods may
lead to social segregation increase in the long run. Greater yNN indicates the counterfactuals are closer to the positive data manifolds.

ORIGIN IBR EBR CCHVAE GS Wachter CRUDS Causal

Centralization 0.4803 0.3075 0.2695 0.4953 0.4804 0.4817 0.4951 0.4804
Atkinson Index 0.9496 0.6957 0.7435 0.9971 0.9455 0.9446 0.9971 0.9638

Avg Prox 0.6409 0.7745 0.7840 0.6772 0.7012 0.7020 0.6983 0.7019

Recourse Cost - 0.3291 0.3925 0.2448 0.2410 0.2391 0.3872 0.2430
Cost Gap - 0.0087 0.0197 0.0166 0.0147 0.0103 0.0169 0.0144

yNN - 0.9620 1 0.3003 0.2699 0.2871 0.9968 0.3008

# Inc. in Segregation - 0 0 2 1 1 2 2

condition. Each group has 200 samples that are drawn from
gaussian distributions as shown in Figure 2a. To further in-
vestigate the potential delayed effect in practice, we use the
real-world datasets German (Asuncion & Newman, 2007),
Give-me-some-credit (GMC) (Kaggle, 2011), Law (Wight-
man, 1998) and COMPAS (Angwin et al., 2016) with sen-
sitive attributes to evaluate existing and proposed recourse
algorithms. German and GMC are used to predict whether
decision subjects will default after receiving loans (shown
in the main paper, results for other datasets are included
in Appendix G). Law dataset is used to predict students’
first-year average GPA. COMPAS is a recidivism predic-
tion dataset to predict each decision subject will recommit
crimes. In COMPAS and Law dataset, we use either sex or
race as the sensitive attribute. We use sex and age as the
sensitive attribute for German and GMC respectively. See
Appendix C for more details about datasets.

Predictive Models We consider binary classification tasks.
For the synthetic dataset, the classifier is trained on empiri-
cal data using a Logistic Regression. For real-world datasets,
the classifier is MLP with relu activations.

Metrics To study the impact of different recourse meth-
ods, we compare various social segregation indexes, the
segregation indexes are described in detail in Section 6.1.
In order to understand proposed algorithms better, we also
compare standard recourse metrics such as recourse cost,
recourse cost difference between groups, invalidation rates
and closeness to data manifold of these algorithms. The
recourse cost difference between groups is used to mea-
sure whether minimizing segregation has effect on the usual
unfairness measure in algorithmic recourse (Gupta et al.,
2019; von Kügelgen et al., 2022). The closeness metric
is a measure that evaluates the fraction of positively clas-
sified instances that are close to counterfactuals, which
is calculated by a nearest-neighbor algorithm defined as
yNN = 1− 1

nk

∑
x′
∑

j∈KNN(x′) |hb(x
′)− hb(xj)|, where

hb = I[h(x) > 0.5] and we choose k = 5 (Pawelczyk et al.,
2021). A larger yNN indicates that the neighborhoods of
counterfactuals are closer to positively classified instances.

A lower recourse cost is preferred since decision subjects
need less effort to get the desired outcome. We use l2-
distance as the distance metric. Since many algorithms are
not guaranteed to find counterfactuals for every individual,
the invalidation rate measures the proportion of decision
subjects who do not receive counterfactuals with desired
outcomes. All results are averaged over 5 runs.

6.1. Quantifying Social Segregation

Social segregation measures how far two ethnic or racial
groups are separated from each other, which is extensively
studied in sociology as an indicative measure for unfairness
in society (Heidari et al., 2019). Following the seminal
work of Massey & Denton (1988) where they propose five
dimensions of (residential) social segregation: centraliza-
tion, evenness, clustering, exposure, and concentration, we
overview these measures and adapt them into quantifying
segregation in users’ feature distributions.

Centralization measures the degree that a group is located
near the center of an urban area (usually declining). Cen-
tralization Index is defined as

∑
i∈central mi/m where m

is the total number of minorities and mi is an indicator
suggesting whether the person is a minority. Evenness
measures how uneven minority population is distributed
over the areal units. It is maximized when, in all areal
units, minority and majority have the same relative num-
ber of members. For N areal units, define T as the to-
tal population, P the fraction of minority, ti,mi the to-
tal and minority population in area i, pi = mi/ti, the
Atkinson Index (Atkinson et al., 1970) can be defined as
1− P

1−P ( 1
N

∑N
i=1(1−pi)

1−βpβi ti/TP )1/(1−β), which mea-
sures the unevenness of the minority population. Clustering
measures the degree that areal units of minority members
are clustered together. Exposure measures the degree of po-
tential contact or interaction between majority and minority
groups. As noted in Massey & Denton (1988), exposure is
related to evenness and depends on the relative sizes of the
two groups. Concentration refers to the amount of space
taken by the minority group in the urban region (Massey &
Denton, 1988). If a minority group takes less space with the
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same size as the majority group, it is considered to be more
concentrated, therefore more segregated.

Following Heidari et al. (2019), we measure centralization,
evenness and clustering dimensions in our experiments. For
centralization, we define the central area as an ϵ-ball around
each minority member, where the neighborhood has the frac-
tion of minority members greater than 0.5 and ϵ is set as the
20% quantile of within-group distance. For Atkinson Index,
each neighborhood is determined using a K-Means cluster-
ing algorithm with 30 clusters fitted on the original data
and β = 0.5, meaning minority and majority members con-
tribute the same to segregation. Clustering is measured by
the spatial proximity (White, 1986) between two groups to
measure the clustering of groups in space. The average prox-
imity is estimated as

∑N
i=1

∑N
j=1 miMjci,j/(mM), where

Mi is the number of majority members in neighborhood i
and M is the total number of majority members. Each indi-
vidual is treated as a neighborhood and ci,j = exp(−di,j),
where di,j is the distance between feature i, j. For central-
ization and Atkinson Index, a greater value indicates more
segregation. For average proximity, a larger value means
user qualifications are less segregated.

6.2. Experimental Results with Synthetic Data

In this section, we evaluate how different recourse methods
reduce segregation with the synthetic data. Qualitative re-
sults for each method are shown in Figure 2. EBR and IBR
perfectly generate counterfactuals that are realistic, low-cost
and balanced in groups. Distance-based recourse methods
like Wachter and GS and Causal recourse with independence
assumption simply route rejected instances to go across the
decision boundary, forming two linear lines in the feature
space, which seems to increase social segregation. Similarly,
since realistic methods often generate counterfactual expla-
nations conditioned on immutable features, it generates two
distinct clusters for each group and makes two groups even
more isolated from each other. While CCHVAE and IBR
have a similar training and sampling procedure, with the
help of adversarial training regarding the sensitive attribute,
the generated counterfactuals of IBR are placed at the over-
lapping region of both groups.

We also quantitatively evaluate each method in terms of
social segregation indexes and recourse cost in Table 1, all
methods have invalidation rates of 0. EBR and IBR can ef-
fectively reduce social segregation, while all other methods
worsen some social segregation index. Realistic algorithms
may lead to worse segregation outcomes due to the condi-
tional generation process. The balanced recourse algorithms
have a higher recourse cost, while interestingly, empiri-
cally IBR even has a smaller recourse cost than CRUDS,
which indicates balanced recourse algorithms have similar
recourse costs compared to realistic methods’. Among all

methods, realistic methods like CRUDS have higher yNN,
indicates the generated counterfactuals are closer to the pos-
itive data manifolds. Similarly, IBR and EBR also have
high yNN, which shows our methods can generate coun-
terfactuals that are realistic while mitigating segregation.
While distance-based algorithms offer the lowest-cost rec-
ommendation, they also have a risk of being unrealistic or
non-actionable (Ustun et al., 2019). All methods have a
similar recourse cost gap across groups. IBR has the low-
est cost gap and EBR has the highest, while most of them
have quite different segregation performance and IBR and
EBR share similar segregation metrics. This confirms our
previous intuition that segregation metrics are orthogonal
to the group disparity in recourse costs. Balanced recourse
algorithms will not necessarily increase recourse cost gap
compared to other recourse algorithms. In general, balanced
recourse algorithms do not introduce active harm in social
segregation while still providing realistic counterfactuals.

6.3. Experimental Results with Real World Data

We further examine the potential social segregation impact
brought by different recourse algorithms in a real-world
context. The results are shown in Table 2, we observe in
most cases, all existing recourse algorithms being evaluated
will lead to some increment in social segregation (see ad-
ditional results with Causal Recourse in Appendix E with
similar findings). This finding is similar to Heidari et al.
(2019) with a social learning dynamic. It is expected since
many realistic recourse algorithms also try to find the near-
est accepted samples in the underlying population, therefore
the decision subjects in the same sensitive group may be-
come closer to each other in the impacted population, which
leads to greater segregation. We also include results of more
datasets with similar findings in Appendix G.

By offering balanced explanations, we find that both EBR
and IBR can reduce the investigated segregation indexes
effectively on all datasets with different sensitive attributes
while EBR has a high invalidation rate on German dataset
(see Appendix D for invalidation rate results), which is prob-
ably due to the small dataset size of the dataset, which leads
to poor fitting of the density models. While IBR and EBR
are expected to have a higher recourse cost compared to
existing recourse methods, we find that realistic algorithms
such as CCHVAE and CRUDS may have a much greater
recourse cost, which is consistent with our theoretical result
in Theorem 5.4. At the cost of higher recourse cost, we find
realistic recourse methods CCHVAE and CRUDS, along
with proposed balanced recourse algorithms have a higher
yNN in general across settings, which means they offer
counterfactuals that are closer to the positive data manifolds,
which can be considered as more realistic. Similar to our
findings with synthetic data, balanced recourse algorithms
do not increase the recourse cost gap and may even have a
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Figure 2. Counterfactuals generated by different algorithms. Blue: M - Accepted; Orange: F - Accepted; Grey: M - Default; Cyan: F
- Default; Green: M - recourse; Red: F - Recourse; Balanced recourse algorithms offer low-cost counterfactuals in the overlap region
of male and female distribution. Counterfactuals from Watcher, GS and Causal (with independence assumption) can be viewed as a
visualization of the decision boundaries. CCHVAE and CRUDS offer counterfactuals within the data manifold, while the recourses for
male and female candidates are distinct from each other.

Table 2. Quantitative evaluations of counterfactuals generated by different recourse algorithms on real datasets. Balanced recourse
algorithms can effectively reduce social segregation indexes while all other recourse methods may increase social segregation in the long
run. Greater value for Centralization and Atkinson Index and smaller value in Average Proximity indicate more segregation. Greater yNN
indicates the counterfactuals are closer to the positive data manifolds. See Appendix G for all datasets.

Dataset (Sen) Metric Origin IBR EBR CCHVAE GS Wachter CRUDS

German (Sex) Centralization 0.0487 0.0452 0.0104 0.0384 0.0452 0.0803 0.1260
German (Sex) Atkinson Index 0.1790 0.1731 0.1041 0.2342 0.1754 0.1965 0.2247
German (Sex) Avg Prox 0.3051 0.3769 0.3357 0.2974 0.2592 0.2726 0.4548

German (Sex) Recourse Cost - 1.2402 1.4853 1.0995 1.2575 0.5123 1.7954
German (Sex) Cost Gap - 0.1404 0.1258 0.1374 0.1422 0.0874 0.0718
German (Sex) yNN - 0.2142 0.1439 0.1690 0.2094 0.0888 0.0562

GMC(Age) Centralization 0.3414 0.3314 0.3374 0.3331 0.3411 0.3417 0.3320
GMC(Age) Atkinson Index 0.1218 0.1193 0.1216 0.1248 0.1220 0.1218 0.1252
GMC(Age) Avg Prox 0.5820 0.5902 0.5853 0.5884 0.5826 0.5825 0.5895

GMC(Age) Recourse Cost - 0.6335 0.3565 0.5156 0.1483 0.1606 0.6272
GMC(Age) Cost Gap - 0.0596 0.1082 0.0810 0.0240 0.0203 0.0780
GMC(Age) yNN - 0.9741 0.9541 0.9623 0.5265 0.5056 1

# Inc. in Segregation - 0 0 3 2 4 3

smaller recourse cost gap compared to other methods.

6.4. Ablation Study
Here we conduct ablation studies on the hyperparameters
of EBR and IBR on our synthetic examples in Section 6.2
to examine their effect on social segregation and recourse
cost. The results are shown in Appendix F. With a higher
value of β, the counterfactual explanations generated by
EBR have a higher density in the feature distribution of both
sensitive groups, therefore, the recourse costs are expected
to be higher, which is validated by our experimental findings.
Meanwhile, we also find that increasing β in EBR in general
reduces social segregation indexes. For IBR, we find that the
impact of β on both social segregation and recourse costs is
small, a potential reason can be that VAE uses the mean of
the posterior distribution for generating new samples, which
is always the highest density region. The recourse cost gap
also remains small with varying β.

7. Conclusions and Future Work
In this work, we made one of the first attempts at analyzing
the societal impact of algorithmic recourse. To this end, we
theoretically and empirically analyzed the recourses output
by state-of-the-art algorithms and demonstrated that large-
scale implementation of recourses by end users may lead to
social segregation in the long term. To address this problem,
we proposed novel algorithms which leverage implicit and
explicit conditional generative models to not only minimize
the chance of segregation but also to provide realistic re-
courses. We also carried out extensive empirical analysis
to establish the efficacy of the proposed algorithms. Our
work paves the way for several interesting future research
directions. For instance, it is unlikely that recourses will be
implemented with full compliance in practice. It would be
interesting to study the societal impacts of recourses with
partial compliance on social segregation.
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A. Proofs
Theorem 4.1. Assume repaying male X1 with feature (x, y) follows a uniform distribution x ∼ U [l, l+ b], y ∼ U [u, u+ a];
repaying female X2 follows x ∼ U [l + b− c, l + 2b− c], y ∼ U [u, u+ a]; default male X3 follows a uniform distribution
x ∼ U [l, l + b], y ∼ U [−u − a,−u]; default female X4 follows x ∼ U [l + b − c, l + 2b − c], y ∼ U [−u − a, u]; c <
b;a, b, u, c > 0. With perfect linear classifier y = 0 and segregation metric d(X1,X2)+ d(X1,X4)− d(X1,X1)− d(X1,X3)
where d(·, ·) is the hausdorff distance with euclidean distance, the distance-based and realistic-based recourse algorithms
will always increase segregation for any l, u, a, b, c.

Proof of Theorem 4.1:

Proof. Hausdorff distance is defined as dH(X,Y ) = max{supx∈X d(x, Y ), supy∈Y d(X, y)}, where d(x, Y ) =
infy∈Y d(x, y). Here we define d(·, ·) as euclidean distance.

Original Segregation Index:

d(X1,X2) = b− c; d(X1,X1) = 0; d(X1,X3) = 2µ+ a; d(X1,X4) =
√
(b− c)2 + (2µ+ a)2;

Distance-based Segregation Index: d(X1,X2) = b − c; d(X1,X1) = 0; d(X1,X3) = µ + a; d(X1,X4) =√
(b− c)2 + (µ+ a)2;

Realistic Segregation Index: d(X1,X2) = b− c; d(X1,X1) = 0; d(X1,X3) = a; d(X1,X4) =
√

(b− c)2 + a2;

SI = d(X1,X2) + d(X1,X4)− d(X1,X1)− d(X1,X3)

Thus SIoriginal − SIdist = −µ+
√

(b− c)2 + (2µ+ a)2 −
√
(b− c)2 + (µ+ a)2

SIoriginal − SIdist < 0 ⇌ −µ+
√
(b− c)2 + (2µ+ a)2 <

√
(b− c)2 + (µ+ a)2 (1)

⇌ 2µ+ a <
√
(b− c)2 + (2µ+ a)2 (2)

SIoriginal − SIreal = −2µ+
√
(b− c)2 + (2µ+ a)2 −

√
(b− c)2 + a2

SIoriginal − SIreal < 0 ⇌ −2µ+
√
(b− c)2 + (2µ+ a)2 <

√
(b− c)2 + a2 (3)

⇌ 2µ+ a <
√
(b− c)2 + (2µ+ a)2 (4)

which concludes the proof.

Theorem 5.1. Assume repaying male X1 with feature (x, y) follows a uniform distribution x ∼ U [l, l+ b], y ∼ U [u, u+ a];
repaying female X2 follows x ∼ U [l + b− c, l + 2b− c], y ∼ U [u, u+ a]; default male X3 follows a uniform distribution
x ∼ U [l, l + b], y ∼ U [−u − a,−u]; default female X4 follows x ∼ U [l + b − c, l + 2b − c], y ∼ U [−u − a, u]; c < b;
a, b, u, c > 0. With perfect linear classifier y = 0 and segregation metric d(X1,X2) + d(X1,X4)− d(X1,X1)− d(X1,X3)
where d(·, ·) is the hausdorff distance with euclidean distance, the balanced recourse algorithm will always decrease
segregation for any l, u, a, b, c.

Proof of Theorem 5.1:

Proof. Original Segregation Index:

d(X1,X2) = b− c; d(X1,X1) = 0; d(X1,X3) = 2µ+ a; d(X1,X4) =
√
(b− c)2 + (2µ+ a)2;

Balanced Segregation Index:

d(X1,X2) = b− c; d(X1,X1) = 0; d(X1,X3) = b− c; d(X1,X4) = b− c;

SI = d(X1,X2) + d(X1,X4)− d(X1,X1)− d(X1,X3)

SIoriginal − SIbalanced = −(2µ+ a) +
√
(b− c)2 + (2µ+ a)2 > 0.
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Theorem 5.2. Given a fixed deterministic encoder z = f(x), the features are sampled from decoder x′ = gϕ(x
′|z).

Training with objective minη maxθ,ϕ Ex∼P (x),z∼Pθ(z|x) logPϕ(x|z) − β log(Pη(m|z)) with sensitive attribute m, the
optimal discriminator is Pη(m|f(x)) = p(m|f(x)) and the optimal decoder is gϕ(x|z) = p(x|z).

Proof of Theorem 5.2:

Proof. Discriminator: The objective of the discriminator is

VD = Ex − log(Pη(m|z)) = −
∑
x,m

p(x,m) log(Pη(m|z)) s.t.
∑
m

Pη(m|z) = 1, Pη(m|z) ≥ 0

The lagrangian dual can be written as

LD = −
∑
x,m

p(x,m) log(Pη(m|z)) +
∑
z

λz(
∑
m

Pη(m|z)− 1) (5)

Taking gradient with respect to Pη(m|z), we have

λzPη(m|z) = p(m, z) (6)

Since
∑

m Pη(m|z) = 1, λz = p(z), then we get Pη(m|z) = P (m|z).

Decoder: The objective of decoder is

VDec = Ex − log(Pϕ(x|z)) = −
∑
x,m,z

p(x,m, z) log(Pϕ(x|z)) s.t.
∑
x

Pϕ(x|z) = 1, Pϕ(x|z) ≥ 0

The lagrangian dual can be written as

LDec = −
∑
x,m,z

p(x,m, z) log(Pϕ(x|z)) +
∑
z

λz(
∑
x

Pϕ(x|z)− 1) (7)

Taking the gradient with respect to Pϕ(x|z), we have

λzPϕ(x|z) = p(x, z) (8)

Since
∑

x Pϕ(x|z) = 1, λz = p(z), then we get Pϕ(x|z) = P (x|z).

Corollary 5.2.1. When x ⊥⊥ m, if the optimal discriminator and decoder as p(m|z) and p(x|z), then the optimal encoder
induces uniform distribution p(m|z).

Proof of Corollary 5.3:

Proof. The objective is

min
θ

Ex,z=fθ(x) − log(P (x|z)) + log(P (m|z)) (9)

s.t.
∑
m

P (m|z) = 1, P (m|z) ≥ 0

Then lagrangian can be written as

Ex,z=fθ(x) − log(P (x|z)) + log(P (m|z))− λ(
∑
m

P (m|z)− 1) (10)

when x ⊥⊥ m, P (x|z) is independent of P (m|z), then we can take the gradient w.r.t. P (m|z), we have λP (m|z) = 1, since∑
P (m|z) = 1, then λ = m, thus P (m|z) = 1/m.
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Theorem 5.3. Assume male and female who will repay are from a compact subspace X1,X2 and male and female who
will default are from a compact subspace X3,X4 and the high-density region X ′ = {x : P (x|m)P (x|1 − m) > β}.
Assume the recourse cost d(·, ·) is measured by lp distance. The recourse cost of the balanced recourse cost is bounded by
dH(X3,X ′) + dH(X4,X ′). The recourse cost of the realistic recourse cost is bounded by dH(X3,X1) + dH(X4,X2).

Proof of Theorem 5.4:

Proof. The recourse cost r for balanced algorithm can be written as

Ex∼X3,y=argminy∈X′ d(x,y)d(x, y) + Ex∼X4,y=argminy∈X′ d(x,y)d(x, y) (11)

≤dH(X3,X ′) + dH(X4,X ′) (12)

The recourse cost r for realistic algorithm can be written as

Ex∼X3,y=argminy∈X1
d(x,y)d(x, y) + Ex∼X4,y=argminy∈X2

d(x,y)d(x, y) (13)

≤dH(X3,X1) + dH(X4,X2) (14)

It is easy to see when X1 and X2 are already balanced (X1 = X2 = X ′), realistic recourse and balanced recourse attain the
same upper bound in terms of recourse cost.

B. Recourse Methods
Here we offer an overview of the recourse methods used in the paper. We use the same notation in our main paper and the
implementations in Pawelczyk et al. (2021).

Wachter (Wachter et al., 2017): Wachter solves the following optimization problem using :

argmin
x′

d(x, x′) s.t. h(x′) ≥ s, (15)

where x is the original instance, then this optimization problem can be written as

argmin
x′

l(h(x′), s) + λd(x, x′), (16)

λ is the lagrangian multiplier and l is a loss function such as mean squared error. Since Wachter cannot preserve the
immutable features, we manually hard-code this constraint to counterfactual explanations generated by Wachter. λ is set as
0.01 in the experiments.

Growing Spheres (GS) (Laugel et al., 2017): GS uses a random search algorithm to search the closet counterfactuals
labels using growing hyperspheres. If the input feature is binary, GS uses bernoulli sampling to search for counterfactual
explanations. Unlike Wachter, GS can keep the immutable features by forbidding them to change in the search procedure.
The step size of the growing hyperspheres is set as 0.2.

CCHVAE (Pawelczyk et al., 2020): Similar to variational auto-encoder (VAE), CCHVAE uses an encoder to map the
mutable features xf to a latent space z, to maximize the likelihood of mutable features given the immutables xm, CCHVAE
proposes to concatenate z with xm to reconstruct xf . The evidence lower bound (ELBO) can be written as

LCV = Eq(z|xm) log p(xf |z, xI)−KL(q(z|xm, xI)||p(z|xm)),

then counterfactual explanations are generated by searching for the closet latent z′ on a neighborhood of the encoded z from
xf , then decode x′

f from z′ until a new counterfactual explanation with desired outcome is found.

CRUDS (Downs et al., 2020): Similar to CCHVAE, CRUDS leverages VAE to capture realisticity. CRUDS uses a
Conditional Subspace VAE (CSVAE) to disentangle the latent space into w that is predictive of the label y and z that
does not affect the outcome. Given a instance x, samples are drawn from the posterior distribution z ∼ qϕ(z|x) and
w ∼ pθ(w|y = 1), the counterfactual explanations are finally given by x′ ∼ gη(w, z), where gη is a decoder which can be
parameterized by a gaussian distribution as in Downs et al. (2020).



On the Impact of Algorithmic Recourse on Social Segregation

Causal Recourse (Karimi et al., 2020b): Causal recourse assumes that the features follow a known causal relationship
provided by a causal graph. For synthetic data, we use the implementation in the CARLA package(Pawelczyk et al.,
2021) and assume feature independence (since our toy example cannot be represented by known structured equations with
additive noise). For the german credit dataset, we use the official implementation in https://github.com/amirhk/
recourse and use the causal graph provided in Karimi et al. (2020b). The experimental results for german credit are
included in Appendix E separately since Karimi et al. (2020b) only used 7 features in the experiments.

C. Dataset
Here we discuss the dataset statistics and features we used in the paper.

German (Asuncion & Newman, 2007): We use sex as the sensitive attribute. The dataset includes 1000 samples, 12
immutable features such as sex, age, purpose of the loan, 8 mutable features including number of people being liable to
provide maintenance for, installment rate, employment time, job qualification, credit amount. The prediction target is
whether the customer has a good or bad credit risk.

Give-me-some-credit (GMC) (Kaggle, 2011): We use age as the sensitive attribute. The dataset includes 115527 samples,
1 immutable feature age, and 9 mutable features such as the monthly income, debt ratio, number of times that payment is 90
days late, number of real estate loans, revolving utilization of unsecured lines. We sample 10000 samples per run due to the
high computation cost of some social segregation indexes. The prediction target is whether the customer will experience 90
days past due delinquency or worse.

Law (Wightman, 1998): We use either sex or race as the sensitive attribute. The dataset includes 21791 samples, 3
immutable features including sex, race, and region, 4 mutable features including SAT score, prior GPA, sander index and
first-year average GPA. We sample 10000 samples per run due to the high computation cost of some social segregation
indexes. The prediction target is whether the student passes bar exam.

COMPAS (Angwin et al., 2016): COMPAS is a recidivism prediction dataset to predict each decision subject will recommit
crimes. We use either sex or race as the sensitive attribute. The dataset includes 6172 samples, 4 immutable features
including age, sex, race, and charge degree, 3 mutable features including two-year recidivism, number of prior counts, and
length of stay. The prediction target is whether the suspect has a high recidivism risk.

D. Experiment Results for Invalidation Rates
We include the invalidation results here due to the space constraint. The results are shown in Table 3. All methods receives
low invalidation rates in general except Wachter since it does not consider immutable constraint. Since German dataset
size is small, we observe all realistic methods except GS start to have invalidated recourse recommendations, which can be
explained due to the difficulty of fitting density models given limited data.

Table 3. Invalidation Rate for Different Recourse Methods.
IBR EBR CCHVAE GS Wachter CRUDS

German (Sex) 0.0013 0.3385 0.0013 0 0.9893 0.8216
GMC (Age) 0 0 0 0 0 0
Law (Sex) 0 0 0 0 0 0

Law (Race) 0 0 0 0 0 0
COMPAS (Sex) 0 0 0 0 0.8448 0

COMPAS (Race) 0 0 0 0 0.8448 0

E. Additional Experiment Results for Causal Recourse
In addition, we examine whether Causal Recourse may increase social segregation. We use the causal graph and default
implementation in Karimi et al. (2020b) on german dataset and treat sex as the sensitive attribute. The features used include
age, education, loan amount, loan duration, income and savings. The classifier class is chosen to be MLP.

The results are shown in Table 4. Similarly, we observe Causal Recourse may also increase social segregation, which is

https://github.com/amirhk/recourse
https://github.com/amirhk/recourse
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expected since it does not consider the potential user behavior changes.

Table 4. Results for Causal Recourse on German Dataset. Causal recourse algorithm also leads to more segregation.

German (Sex) Centralization Atkinson Index Avg Prox Recourse Cost Cost Gap Invalidation Rate

Origin 0.2700 0.0544 0.0032 - - -
Causal Recourse 0.2848 0.0548 0.0029 0.0846 0.0243 0

F. Experiment Results for Ablation Studies
We include our results for ablation studies in Table 5. Here we conduct ablation studies on the hyperparameters of EBR
and IBR on our synthetic examples in Section 6.2 to examine their effect on social segregation and recourse cost. With a
higher value of β, the counterfactual explanations generated by EBR have a higher density in the feature distribution of both
sensitive groups, therefore, the recourse costs are expected to be higher, which is validated by our experimental findings.
Meanwhile, we also find that increasing β in EBR in general reduces social segregation indexes. For IBR, we find that the
impact of β on both social segregation and recourse costs is small, a potential reason can be that VAE uses the mean of the
posterior distribution for generating new samples, which is always the highest density region. The recourse cost gap also
remains small with varying β.

Table 5. Ablation study on hyperparameters of EBR and IBR. β in EBR can affect social segregation and recourse cost of generated
recourses in opposite ways while counterfactual explanations from IBR are more stable with respect to β.

EBR β = 0.1 β = 0.3 β = 0.5 β = 0.7 IBR β = 0.1 β = 1 β = 10 β = 100

Centralization 0.4836 0.2695 0.3068 0.3068 Centralization 0.3075 0.3075 0.3075 0.3075
Atkinson Index 0.7950 0.7435 0.7402 0.6914 Atkinson Index 0.6957 0.6957 0.6926 0.6975

Avg Prox 0.7524 0.7840 0.7935 0.8042 Avg Prox 0.7747 0.7745 0.7753 0.7746
Recourse Cost 0.3652 0.3925 0.4114 0.4470 Recourse Cost 0.3297 0.3291 0.3320 0.3292

Cost Gap 0.0238 0.0197 0.0153 0.0123 Cost Gap 0.0095 0.0087 0.0100 0.0088
yNN 1 1 1 1 yNN 0.9465 0.9620 0.9620 0.9620

G. Experiment Results for All Datasets
Here, we include results for all datasets in Table 6. Some datasets are omitted in the main paper due to space constraint.
Similarly, we observe existing recourse methods may increase social segregation on most settings and our proposed recourse
methods generate realistic counterfactuals (with high yNN) that can reduce segregation indexes effectively. In few case like
Law with race as the sensitive attribute, all recourse methods do not increase segregation. There is no clear relationship
between the recourse cost gap and segregation, which confirms our intuition that they are orthogonal notions of unfairness
and future work can consider how to optimize them jointly.
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Table 6. Quantitative evaluations of counterfactual explanations generated by different recourse algorithms on Real Datasets. Results are
averaged over 5 runs. Balanced recourse algorithms can effectively reduce social segregation indexes while all other recourse methods
may increase social segregation in the long run. Greater value for Centralization and Atkinson Index and smaller value in Average
Proximity indicate more segregation. Greater yNN indicates the counterfactuals are closer to the positive data manifolds.

Dataset (Sen) Metric Origin IBR EBR CCHVAE GS Wachter CRUDS

German (Sex) Centralization 0.0487 0.0452 0.0104 0.0384 0.0452 0.0803 0.1260
German (Sex) Atkinson Index 0.1790 0.1731 0.1041 0.2342 0.1754 0.1965 0.2247
German (Sex) Avg Prox 0.3051 0.3769 0.3357 0.2974 0.2592 0.2726 0.4548

German (Sex) Recourse Cost - 1.2402 1.4853 1.0995 1.2575 0.5123 1.7954
German (Sex) Cost Gap - 0.1404 0.1258 0.1374 0.1422 0.0874 0.0718
German (Sex) yNN - 0.2142 0.1439 0.1690 0.2094 0.0888 0.0562

GMC(Age) Centralization 0.3414 0.3314 0.3374 0.3331 0.3411 0.3417 0.3320
GMC(Age) Atkinson Index 0.1218 0.1193 0.1216 0.1248 0.1220 0.1218 0.1252
GMC(Age) Avg Prox 0.5820 0.5902 0.5853 0.5884 0.5826 0.5825 0.5895

GMC(Age) Recourse Cost - 0.6335 0.3565 0.5156 0.1483 0.1606 0.6272
GMC(Age) Cost Gap - 0.0596 0.1082 0.0810 0.0240 0.0203 0.0780
GMC(Age) yNN - 0.9741 0.9541 0.9623 0.5265 0.5056 1

Law (Sex) Centralization 0.0858 0.0694 0.0805 0.0743 0.0829 0.0833 0.0932
Law (Sex) Atkinson Index 0.0319 0.0314 0.0318 0.0345 0.0318 0.0326 0.0387
Law (Sex) Avg Prox 0.7027 0.7177 0.7076 0.7173 0.7055 0.7070 0.7168

Law (Sex) Recourse Cost - 0.3945 0.1334 0.3914 0.0974 0.1168 0.5384
Law (Sex) Cost Gap - 0.0231 0.0111 0.0302 0.0078 0.0092 0.0188
Law (Sex) yNN - 1 0.7098 1 0.5475 0.6231 1

Law (Race) Centralization 0.0288 0.0028 0.0137 0.0025 0.0245 0.0175 0.0020
Law (Race) Atkinson Index 0.2512 0.1939 0.2418 0.2374 0.2436 0.2401 0.2130
Law (Race) Avg Prox 0.6660 0.7103 0.6833 0.7035 0.6739 0.6782 0.7111

Law (Race) Recourse Cost - 0.4308 0.1699 0.3914 0.0977 0.1168 0.4629
Law (Race) Cost Gap - 0.0301 0.0206 0.1690 0.0402 0.0444 0.1064
Law (Race) yNN - 1 0.8422 1 0.5510 0.6231 1

COMPAS (Sex) Centralization 0.0020 0.0018 0.0020 0.0009 0.0025 0.0027 0.0057
COMPAS (Sex) Atkinson Index 0.0581 0.0478 0.0537 0.0521 0.0508 0.0522 0.0500
COMPAS (Sex) Avg Prox 0.6371 0.6511 0.6484 0.6474 0.6409 0.6405 0.6545

COMPAS (Sex) Recourse Cost - 0.5114 0.2642 0.2243 0.1247 0.0958 0.6302
COMPAS (Sex) Cost Gap - 0.0274 0.0535 0.0513 0.0227 0.0150 0.1760
COMPAS (Sex) yNN - 0.8792 0.9668 0.8786 0.3233 0.1860 1

COMPAS (Race) Centralization 0.2947 0.2846 0.2943 0.2892 0.2986 0.3010 0.3054
COMPAS (Race) Atkinson Index 0.0709 0.0563 0.0589 0.0656 0.0627 0.0654 0.0500
COMPAS (Race) Avg Prox 0.6236 0.6372 0.6358 0.6366 0.6288 0.6281 0.6435

COMPAS (Race) Recourse Cost - 0.2331 0.2225 0.2243 0.1243 0.0958 0.6302
COMPAS (Race) Cost Gap - 0.0287 0.0589 0.0832 0.0129 0.0130 0.0931
COMPAS (Race) yNN - 0.8743 0.9859 0.8786 0.3233 0.1860 1

# Inc. in Segregation - 0 0 4 4 7 7


